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Abstract

In the presence of sharp (zero radius) V-shaped notches the notch stress intensity factors (N-SIFs) quantify the inten-
sities of the asymptotic linear elastic stress distributions. They are proportional to the limit of the mode I or II stress
components multiplied by the distance powered 1 — Z; from the notch tip, Z; being Williams’ eigenvalues. When the
notch tip radius is different from zero, the definition is no longer valid from a theoretical point of view and the char-
acteristic, singular, sharp-notch field diverges from the rounded-notch solution very next to the notch. Nevertheless, N-
SIFs continue to be used as parameters governing fracture if the notch root radius is sufficiently small with respect to
the notch depth.

Taking advantage of a recent analytical formulation able to describe stress distributions ahead of rounded V-
notches, the paper gives a generalized form for the notch stress intensity factors, in which not only the opening angle
but also the tip radius dimension is explicitly involved. Such parameters quantify the stress redistribution due to the
root radius with respect to the sharp notch case.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the context of elasticity theory, the asymptotic stress state next to a re-entrant corner (sharp V-notch)
is singular and the degree of singularity does depend on the notch opening angle (Williams, 1952). The
stress field intensity is a function of the overall geometry of the component and the remotely applied loads,
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which is generally quantified by the notch stress intensity factors (hereafter N-SIFs). N-SIFs are the exten-
sion to sharp V-notches (Gross and Mendelson, 1972) of the conventional stress intensity factors used for
cracks.

Any fracture criterion based on critical values of the notch stress intensity factor states that a crack prop-
agates from the notch tip when the actual value of such parameter reaches a critical value. N-SIFs are en-
dowed with an odd dimensionality, which depends on the notch angle (Williams, 1952) or on the elastic
properties of bonded materials (Bogy, 1971). When the singularity degree is constant, the generalized stress
intensity factors can be compared directly without any assumption regarding the actual entity that drives
failure phenomenon. Reedy (1993) and Reedy and Guess (1993), for example, correlated failure of adhe-
sive-bonded butt tensile joints with a generalized stress intensity at the free edge of the interface between
elastic and rigid layers. The degree of singularity in those specimens was about —0.33, against —0.5 of linear
elastic fracture mechanics.

The same degree of singularity, —0.33, was found to characterize a large amount of experimental data
taken from the literature and related to steel and aluminum welded joints subjected to fatigue loading
(Lazzarin and Tovo, 1998; Atzori et al., 1999; Lazzarin and Livieri, 2001). In those analyses the weld flank
was modeled as a sharp V-notch with a constant value of the angle (135°), in order to overcome the var-
iability of the weld toe radius and allow a strong synthesis of experimental data in terms of N-SIF, despite
the large variability shown by main plate and transverse plate thickness, which ranged from 6 to 100 mm
and from 3 to 200 mm, respectively.

By proceeding on parallel tracks, the problem of sharp V-notches in brittle or quasi-brittle materials
under static loads, has been analyzed by many researchers (see, among the others, Carpinteri, 1987; Knesl,
1991; Seweryn, 1994; Nui et al., 1994; Chen, 1995, 1998; Fett, 1996; Dunn et al., 1997a,b; Lazzarin and
Zambardi, 2001; Strandberg, 2002; Gémez and Elices, 2003a,b).

Knels and Seweryn’s stress criterion of brittle failure is based on the assumption that crack initiation or
propagation occurs when the mean value of decohesive stress over a specified damage segment dj reaches its
critical value. (Knesl, 1991; Seweryn, 1994). Afterwards, the criterion was extended and applied also to
structural elements under multi-axial loading (Seweryn and Mrdz, 1995; Seweryn et al., 1997) by introduc-
ing a non local failure function capable of combining normal and shear stress components.

By using the body force method, Chen (1995) determined mode I and mode IT N-SIFs for a variety of
sharp V-notches and applied such factors to fracture analyses of plane specimens made of acrylic resin
under mode I and mixed mode loading (Chen, 1998). Fracture at the notch tip was simulated by propaga-
tion of a small virtual crack, with a length of &, positioned at the notch tip. Both the stress intensity factor at
the virtual crack tip and the average energy release rate (for a crack with length of ¢) were given as a func-
tion of mode I and mode IT N-SIFs of uncracked specimens.

Re-analyzing a large amount of data reported in the literature, Gémez and Elices (2003a) observed that
good agreement between computed and measured failure loads were obtained not only for ideally sharp
notched (notch root radius equal to zero) and brittle fracture, but also when root radii were small (typically
less than 0.05 mm) and when plasticity was contained. Afterwards, considering linear elastic behavior and
ideally sharp notches, Gémez and Elices (2003b) were able to demonstrate that a single nondimensional
curve provides an accurate fit of experimental data from V-notched specimens of steel, aluminum, PMMA
and PVC. Their curve plots, as a function of the notch angle, the nondimensional parameter K}“CV, which
combines together critical value of N-SIFs, fracture toughness Kjc and a characteristic length of the mate-
rial Ly,. Such a length depends on Kjc and the ultimate tensile stress g, according to the expression
La = (Kic/oy)’.

In general, the process zone must extend outside the region where the sharp and the blunt notch solu-
tions deviate, so that failure can be considered governed by the singular terms of the elastic solution. Deal-
ing with these problems, Dini and Hills (2004) have recently discussed in details the conditions under which
the singular field characterizes the behavior of the finite radiused notch. The question Dini and Hills wished
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specifically to address was the role played by notch intensity factors in characterizing the failure in the pres-
ence of a nearly sharp notch. They determined a lower and an upper bound to the load, both normalized to
the shear yield stress, as a function of the notch angle, in order to achieve characterization of the process
zone by the singular solution within a given discrepancy (5% or 10%). The lower bound to the load corre-
sponded to a minimum value of the notch intensity factor and a maximum value of the root notch.

Recently Susmel and Taylor (2003) presented a number of experimental data obtained from tests con-
ducted on V-notched specimens subjected to in-phase mixed mode I and mode II loadings. Since the mean
value of the root radius was very small (0.074 mm) compared to the other notch dimensions, the notch
stress intensity factors were conveniently determined by assuming a notch root radius equal to zero. How-
ever, by applying some critical distance methods, the best accuracy was obtained by Susmel and Taylor by
taking into account the finite notch root radius, that is, by considering the real-elastic distribution ahead of
the tested V-notches. That happened, in our opinion, because the root radius was not so different from the
material length parameter aq = 0.20 mm.

As stated in the previous paragraph, definitions for N-SIFs given by Gross and Mendelson are valid only
for ideally sharp V notches where Williams’ solution exactly matches stress distributions; nevertheless these
parameters are often adopted in the practice also in the presence of notch tip radii small but different from
zero, by simply ignoring the presence of the radius. This assumption seems to be justified when the notch
depth to tip radius ratio tends to infinite and, consequently, the blunt notch stress field slightly differs from
the sharp notch stress distribution (the notch depth being kept constant). If the process zone governing
fracture phenomena is greater than the zone influenced by the tip radius, N-SIF could be directly used
to predict failure conditions.

The main aim of the present paper is to suggest a generalized form of N-SIFs capable of including the
influence of the notch root radius and quantifying, in particular, the stress redistribution it involves. That
will be obtained by leaving N-SIF’s unit unchanged in that this will continue to be governed by Williams’
solution as for the sharp notch case. The new factors will be obtained taking advantage of a complex
potential solution recently reported in the literature (Filippi et al., 2002). Since that formulation was not
exact but approximate, the accuracy of the new definitions will be carefully checked against numerical
analyses.

Finally, some plots correlating mode I N-SIFs for radiused notches to the conventional N-SIFs for sharp
notches will be presented as a function of p/a and h/a ratios, p and a being the notch root radius and depth,
and / the ligament width.

2. Analytical background

By using stress distributions along the notch bisector (0 = 0), Modes I and II generalized stress intensity
factors for sharp V notches are given by the following expressions (Gross and Mendelson, 1972):

KY =V2n lim '~ [g(r, 0)] (1)
K =+V2n lim 2 [1.0(r,0)] (2)

where A, and 4, are Williams’ eigenvalues. In another, slightly different, definition reported in the literature
the exponents (1 — 4;) embrace also (2x) (Carpinteri, 1987; Seweryn, 1994).

Egs. (1) and (2) involve stress distributions present on the notch bisector, where symmetric and skew-
symmetric stress distributions can be separated, and formulated as limit condition in order to avoid any
influence of the remote stress field. There is, however, a finite size region where stresses and strains are fully
controlled by N-SIFs.
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Thanks to Williams’ solution, definitions (1) and (2) are exact for sharp V-notch problems. On the other
hand, their extension to non-zero-radius V-notches is somewhat arbitrary. Due to the presence of the
rounded notch root, when the distance r from the notch tip tends to zero, also Egs. (1) and (2) tends to
zero. To overcome this problem, N-SIFs (1) and (2) are commonly evaluated at a convenient distance from
the notch tip, where the tip radius influence strongly decreases and the slopes of stress fields match quite
well those of sharp V-notches. This behavior is shown in Fig. 2a where, at distances from the notch tip
greater than about 0.5p, FE stress distributions for the blunt notches exhibit a constant slope in a double
logarithmic diagram. In this zone the intensity of the stress field can be expressed in term of NSIF. On the
other hand, the degree of accuracy and the limits of this approach are not clearly identified. The limits are
evident in Fig. 2b, where the product v2nr!~*[a4(r, 0)], see Eq. (1), is plotted for different U-notches in a
finite size plate. It is evident that the extension of the region where N-SIF is almost constant or where it
does not vary significantly depends on the notch geometry: the greater the tip radius value, the lower
the zone size. This zone completely disappears when the tip radius has the same order of magnitude of
the notch depth (2.5 mm against 10.0 mm, see Fig. 2b). Only when p = 0 Eq. (1) an exact value for Mode
I NSIF.

The problem is even more complicated in the presence of mode II load conditions. In the presence of a
notch tip radius different from zero, equilibrium conditions at the notch root force 7,4 to be null at the edge,
while the stress distribution due to sharp notch remains singular, at least when the notch angle is less than
102° (Williams, 1952).

Filippi et al. (2002) recently proposed an analytical approach for describing local stress field ahead of
rounded V-notches. The stress components were written by separating the contribution caused by the sym-
metric solution (mode I) from that caused by to the skew-symmetric solution (mode II).

With reference to the coordinate system shown in Fig. 1, mode I stresses are (Filippi et al., 2002):

o (14 Ay)cos(l — 4;)0 cos(1 + 41)0
o, ¢ =" ay [ (3= i) cos(1 —A4)0 p + (1 — 21)Q —cos(l+ 41)0
T, (I = 2)sin(1 — 4,)0 sin(1 4 4;)0
“ (14 py)cos(1 — )0 cos(l + ;)0
i (5) [ G mcos( =0 btz f —cost )0 3)
(1 =) sin(l — ;)0 sin(1 + ;)0

where both the real number ¢ and the distance ry from the origin of the coordinate system and notch tip
depend on the V-notch angle according to the expressions reported in Fig. 1. These expressions were de-
rived by Lazzarin and Tovo (1996) and Filippi et al. (2002) by using Neuber’s conformal mapping in an
auxiliary (u,v) semi-infinite plane (Neuber, 1958). It might be sufficient to remember here that the relation

20
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Fig. 1. Coordinate systems and geometrical parameters. Distance ry defined according to Lazzarin and Tovo (1996) and Filippi et al.
(2002).
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Fig. 2. Plots of the maximum principal stress (a) and Mode I notch intensity factor along the notch bisector (b). K} expressed
according to Eq. (1) while eliminating the limit condition r — 0.

between Cartesian coordinates and curvilinear coordinates is x + iy = (u + iv)?, where ¢ is a real number
ranging from 1.0 (flat edge) to 2.0 (crack). Then the curve defined by u = 0, which describes an angle equal
to 2u, allows us to determine the relationship between ¢ and 2«. On the other hand, by using the curve
u = uy approximating the free edge of the notch and, in particular, the relationship ro = (1), it is possible
to obtain the link between radius of curvature p and distance ry. Since Eq. (3) represents the symmetric
solution, the 7,4 stress component is always null along the notch bisector.

Mode II stresses are

oy (14 4y)sin(1 — 4,)0 sin(1 + /4,)0
o, ¢ =Ar"ay|{ (3—Ja)sin(l —A)0 p + x, (14 Z2)q —sin(l + )0
Tr0 (I = ZA)cos(l — 4,)0 cos(l + 4,)0
| o\ o (14 ) sin(1 — )0 —sin(1 + ,)0
T (—) 1nd (3= ) sin(l = )0 §+ 7.4 sin(1 + )0 @)
(1 = py) cos(l — py)0 —cos(1 + )0

Now, along the notch bisector, stress components gy and g, are null.

In Egs. (3) and (4) the constants a; and a, need to be evaluated on the basis of the local stress distribu-
tions. All the other parameters in Eqgs. (3) and (4) have closed form expressions (Filippi et al., 2002) but
here, for brevity’s sake, such expressions are omitted and only the values assumed by the parameters for
some typical notch angles are reported in Table 1.
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Table 1

Parameters for mode I and mode II stress components

2a q 41 0 Iy Ke, Yy aj

(degrees) 72 15 b, Xe Ld, )

0 2 0.5 -0.5 1 4 0 1
0.5 —0.5 1 -12 0 -1

30 1.833 0.501 —0.456 1.071 3.791 0.063 1.034
0.598 —0.447 0.921 —11.350 —0.351 -1

45 1.750 0.505 —0.432 1.166 3.572 0.083 1.014
0.660 —0.412 0.814 —10.188 —0.451 -1

60 1.667 0.512 —0.406 1.312 3.283 0.096 0.970
0.731 —0.373 0.658 —8.395 —0.479 -1

90 1.5 0.545 —0.345 1.841 2.506 0.105 0.810
0.909 —0.288 0.219 —2.938 —0.244 -1

120 1.333 0.616 —0.268 3.003 1.515 0.087 0.570
1.149 —0.198 —0.314 4.560 0.513 -1

135 1.25 0.674 —0.220 4.153 0.993 0.067 0.432
1.302 —0.151 —0.570 8.737 1.136 -1

Consider now only stress components oy and 7,9 along the notch bisector (0 = 0). They are given by

=4
(0'0)0:0 =0, = )v]r).lflal [1 =+ /11 =+ Xbl(l — ;Ll)]{l + d)] <VL> } (5)
0
- R r [
(T0)pep = Ty = A7 @a[1 = Jo + 2, (1 + 22)|q 1 + @2 (r) (6)
0
where
v, (1 X
o =4 { Zay (L4 1) + %, ] )
dqg—1) |1+ A+, (1 = 4)
- 1 Lay (L= 1) = %, }
Wy = = = =-1.0 8
"= dm - 1) L—mmlm) )

Parameter @, is tabulated in the last column of Table 1 where, as for Egs. (3)—(6), indexes 1, 2 are associated
to mode I and mode II stress distributions, respectively. Table 1 shows that @, is almost constant when 2 is
equal to or less than 60°; beyond this angle @; progressively decreases as 2o« increases. This means that in
the presence of large V-notch angles the blunt V-notch solution tends to the sharp V-notch solution more
rapidly than as to low angle cases. In order to better clarify the effect of the terms related to the eigenvalue
U, (such terms vanishes when p = 0) it is necessary to consider not only the variability of @, but also that of
the distance ry. Let us define the parameters:

=4
14 @, <r°+x> 1 )
7o
Ho—72
1+@2(”’+x) ] (10)
ro

ro +x>*1
X

C,”:(

72
Co= (1)
X
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Table 2
Minimum value of the distance ¥ from the notch tip at which is 2% or 5% the difference between Eq. (3) and Williams’ solution based
only on the ' ~* term

20=0° 20 = 30° 20 = 45° 20 = 60° 20 =90° 200 = 120° 20 = 135°
Cou = 5% 3.73p 4.89p 5.04p 4.84p 3.27p <p <p

Co = 2% 11.33p 15.01p 15.87p 15.74p 11.87p 4.79p 1.71p
Coo=5% 14.37p 10.99p 9.29p 7.57p 4.25p 1.53p 0.63p
Coa=2% 36.87p 27.51p 2291p 18.35p 9.72p 3.00p 1.03p

where x is the distance from the notch tip (Fig. 1). Such parameters allow us to quantify the errors committed
in the evaluation of N-SIFs when the presence of the notch tip radius is neglected and only the terms pro-
portional to r'~* of Eq. (1) are used. Table 2 displays the minimum distance x able to assure a 2% or 5%
maximum mismatch. The finiteness of the plates is not considered in this evaluation. It is evident that, by
increasing the notch angle, x decreases and the effect is particularly evident when the angle is greater than 90°.

3. An alternative formulation
With reference only to mode I stress distributions, a first, partial solution to the above said problems,

can be obtained by linking the generalized stress intensity factor to the maximum principal stress at the
notch tip, o,.x, by means of the following expression (Filippi et al., 2002):

-4y Vo 1\l
Voo g o _Ver (977
K} = Omax 2n1 o Omax | o < p p) (11)

When the notch angle is null, ¢ =2, @, ro = p/2, so that Eq. (11) immediately gives KXI = Omax\/7P/2
(Irwin, 1958; Glinka, 1985). Under mode II conditions, the procedure cannot be applied, because 7,4 at
the notch tip is always zero.

In the presence of mode I loading, the generalized stress intensity factor KXI should be compared with a
given critical value, characteristic of each material, notch angle, notch radius and, in more general terms,
temperature and strain rate (Gomez and Elices, 2004).

Recently, Eq. (11) has been extensively used by Gémez and Elices (2004) who were able to summarize a
large amount of data obtained from three-point and four point bending, as well as single and double edge
notched bars subject to traction. Materials were PMMA, steel and some ceramics. The relation between
KXI and its critical value, denoted therein as Ké'/, was determined by using the cohesive zone model, from
the knowledge of the elastic properties of the materials (Young’s modulus and Poisson’s coefficient) and
their softening functions.

In order to formulate a more general approach, useful also for blunt notches under mixed load condi-
tions, we suggest that the stresses ahead of the notch tip should be used instead of the peak stress on it, Eq.
(11). Definitions for mode I and mode II generalized N-SIFs are then

KZ,I = 27'67‘17/‘“' —(69)0:0“1_/11 (12)
1+ o (L)
o
Ky =V2mr' )T (13)

- =7
)

1o

where gy and 7,4 are the stresses at the distance r from the local frame origin (Fig. 1).
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Egs. (12) and (13) might be seen as the extension to rounded V-notches of Gross and Mendelson’s def-
inition for sharp V-notches. It is worth noting that Williams’s solution for sharp V-notches is exact, while
Egs. (3) and (4) are approximate because they satisfy boundary conditions not on the entire free edge but at
the notch tip and at convenient distance from it (Filippi et al., 2002). Consequently, Eqgs. (12) and (13) are
not expected to give a constant value for N-SIFs. They will rather show a slightly oscillating value ahead of
the notch tip. The entity of this oscillation is shown in Fig. 3 for two U-notched plates. KXI is normalized
with respect to the nominal stress and plotted against the distance from the notch tip. The figure shows that
the size of the region where KXI exhibits a weak variability is approximately 1 mm, i.e. 1/10 of the notch
depth. The ratio le/am,m ranges from 6.94 to 7.00 when p=2.5mm, from 6.43 to 6.62 when
p = 0.5 mm. The maximum differences are 1% and 3%, respectively.

Fig. 4 shows the same comparison in plates with V-notches characterized by 2a = 135°. Up to a distance
from the notch tip equal to 1.0 mm, the ratio le/onom ranges from 6.16 to 6.43 (p = 0.5 mm) and from
6.27 to 6.46 (p = 2.5 mm). Differences are then 4.5% and 3%, respectively.

In order to eliminate the weak dependence on the notch tip distance, the mean values, defined as
follows:

1 ro+np

K, =— KY,)dr 14
p.l np " ( /),I) ( )

vy 80 o—
K p.l [ ]
ko]
G,
7.5 A
nom 0.
p=25mm <o
[mm*1] 7.0 4 [ © © 0 0000000000000006660°% ¢
p=0.5mm o oo
66 000660 000000000 ol
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Fig. 3. Plots of K, Eq. (12), for some U-notched plates.
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K= [ wwa (15)
K +=— K r
p,II np " p, 11

might be used.

In the analyses reported below, n will be set equal to 0.4, i.e. the upper bound value suitable to avoid any
influence of the nominal stress region in problems where the stress concentration effects are low (Atzori
et al., 2001). A number of FE analyses will permit a direct comparison between Eqs. (12) and (14), justifying
the adoption of the engineering parameter Kv for rapid estimations of stress distribution intensity.

As soon as N-SIFs are determined, parameters ay, a in Egs. (3)—(6) can be immediately derived accord-
ing to the following expressions:

3%
@ =t A (16)
Al 27‘5[1 + A1+ Xbl(l — /L])}
KV
a; = el (17)

—2aV21[1 = Jo + 1, (1 + 22)]

4. Comparison with finite element results

In order to investigate the suitability of previous definitions, a number of different models were investi-
gated numerically. A first set of analyses addressed mode I problems. With reference to geometrical param-
eters shown in Fig. 1 and Table 3 summarizes the geometrical features of a number of models weakened by
V-notches together with their theoretical stress concentration factors (maximum principal stress at the
notch tip to nominal stress ratio), referred either to the gross area or the net area of the models. According
to suggestions reported by Filippi and Lazzarin (2004), in order to minimize the errors, also U notches were
treated as a V-notches with a fictitious opening angle 2o = 30°.

In the last column of the Table 3 is reported the distance X beyond which the finite size effect (FSE)
causes a mismatch with the theoretical solution. To do so, we assigned Cgsg = 0.05, the parameter being
defined according to the following expression:

0. — 0
y FEM — Oy Eq. (5) (18)
Oy Eq. (5)

The results in Table 3 show that:

Crsg =

¢ by keeping p, a and 2o constant, X increases with the ligament width 7;
e by keeping a, h and 2« constant, x increases with p;
e by keeping p, a and & constant, X increases with 2a.

Table 4 gives values of KXI provided by Eq. (12) at very different distances from the notch tip. The last
column also displays the parameter’s mean value evaluated by means of Eq. (14). It is worth noting that in
all cases considered here the engineering parameter is close to its mean value. The difference between local
values and mean values never exceeds £3.5%. This means that K, is surely a tool of interest, suitable for
applications. It should be also noted that at a distance from the notch tip equal to 0.2p or 0.3p the difference
between K/Yl and KZI is always less than 1%.

Figs. 5 and 6 show the results of a second set of analyses carried out on geometries where the notch sub-
jected to mixed mode load conditions. Also in these cases there exists a finite size zone where stress field
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Table 3
Geometrical parameters and stress concentration factors referred to the gross area (Kigross) and the net area (Ky,e(), being valid the
expression Kigross = Kinet (2 + 2a)/h

Model no.  Type of notch (2x) Notch depth @ Notch tip radius p Ligament width 7 Kigross  Kinet Distance x

1 U 5 2.5 20 3.96 2.64 0.29a
2 U 10 2.5 20 5.58 2.79 0.33a
3 U 10 2.5 40 5.33 3.56 0.43a
4 U 10 1.25 40 7.26 4.84 0.35a
5 U 10 0.5 40 11.12 7.41 0.27a
6 U 10 0.5 80 11.32 9.05 0.30a
7 V (45°) 5 2.5 20 3.96 2.64 0.26a
8 V (45°) 10 2.5 40 5.33 3.55 0.36a
9 V (45°) 10 1.25 40 7.25 4.83 0.29a
10 V (45°) 10 0.5 40 11.09 7.40 0.22a
11 V (90°) 5 2.5 20 3.94 2.63 0.25a
12 V (90°) 10 2.5 40 5.27 3.51 0.37a
13 V (90°) 10 1.25 40 7.08 4.72 0.33a
14 V (90°) 10 0.5 40 10.61 7.07 0.28a
15 V (135°) 5 2.5 20 3.57 2.38 0.56a
16 V (135°) 10 2.5 20 4.83 2.42 0.39a
17 V (135°) 10 2.5 40 4.50 3.00 0.78a
18 V (135°) 10 2.5 80 4.58 3.66 1.27a
19 V (135°) 10 0.5 20 8.10 4.05 0.38a
20 V (135°) 10 0.5 40 7.57 5.04 0.74a
21 V (135°) 10 0.5 80 7.70 6.16 1.19a

All models present a double symmetry. Distance X evaluated for Crgg = 0.05.

Table 4
Values of KXI for a nominal stress o,,m = 1 MPa
Model no. (K:,"I according to Eq. (12)) [mm]l_;“ KZ-,I [mm]l_"’1 Eq. (14)

(r=ro)lp

0 0.1 0.2 0.3 0.4 0.5 0.7 1.0 3.0
1 2.33 2.33 2.31 2.31 2.30 2.31 2.34 2.32
2 7.39 7.39 7.39 7.39 7.38 7.39 7.43 7.57 7.38
3 7.01 7.04 7.02 6.99 6.97 6.95 6.96 7.04 7.01
4 6.75 6.81 6.80 6.77 6.74 6.72 6.68 6.67 6.81
5 6.55 6.63 6.64 6.63 6.60 6.56 6.51 6.45 6.58 6.62
6 6.66 6.75 6.78 6.75 6.71 6.68 6.61 6.55 6.66 6.74
7 2.30 2.31 2.30 2.30 2.30 2.31 2.34 2.30
8 6.87 6.94 6.95 6.94 6.92 6.91 6.96 6.93
9 6.63 6.74 6.74 6.73 6.69 6.66 6.65 6.72
10 6.44 6.56 6.59 6.59 6.66 6.54 6.49 6.44 6.57 6.56
11 2.41 2.47 2.48 2.48 2.47 2.47 2.49 247
12 6.72 6.90 6.95 6.94 6.92 6.90 6.89 6.91 6.90
13 6.58 6.78 6.83 6.83 6.80 6.77 6.72 6.67 6.78
14 6.49 6.70 6.76 6.75 6.72 6.68 6.62 6.56 6.61 6.70
15 2.95 3.03 3.01 2.98 2.96 2.95 2.94 2.95 3.00
16 6.29 6.46 6.43 6.38 6.34 6.31 6.28 6.28 6.41
17 6.39 6.57 6.53 6.47 6.42 6.38 6.34 6.30 6.45 6.51
18 6.75 6.95 6.94 6.90 6.87 6.86 6.87 6.93 6.91
19 6.25 6.42 6.39 6.33 6.28 6.25 6.21 6.18 6.19 6.37
20 6.36 6.53 6.50 6.44 6.39 6.35 6.31 6.27 6.25 6.47
21 6.63 6.87 6.84 6.79 6.73 6.70 6.65 6.64 6.73 6.82
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Fig. 6. K o1 and KY 11> EQs. (12) and (13), plotted along the notch bisector of a weld-like geometry.

parameters K/YI and K ,n show a weak variability. The region size for KVI is about 1.0 mm, this value is to
be compared with the height of the notch flanks (10 mm). In such a region K »1 ranges from 2.68 to 2.77 in
Fig. 5 and from 3.58 to 3.68 in Fig. 6. For KV 1 the region size is far more varlable it strongly increases
when the distribution of the corresponding sharp V-notch case is no longer singular.

5. Some expressions linking sharp notches to rounded notches

A collection of stress intensity factors for cracks in finite and infinite plates, at stress concentration zones
of notches and welded joints, as well as at the interface and the corners of dissimilar materials is given by
Murakami (2001).

By extending the celebrated Creager and Paris’ formulation from blunt cracks (Creager and Paris, 1967)
to common notches, Glinka correlated mode I generalized stress intensity factor and maximum elastic
stress at the notch tip by the expression (Glinka, 1985)

K,
Omax = 2 N (19)
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Eq. (19) can be satisfactory applied also to narrow V-notches, due to the weak variability of degree of sin-
gularity when 20 < 90°,

For large V notches a more general expression can be derived from Eq. (11). This expression represents a
generalized form of Eq. (19) and can be applied also when the root radius is comparable to notch depth:

Omax — (1 + Cbl)—pll (20)

Generally, in the presence of a very small value of notch tip radius, KXI is substituted by K. However, we
typically have K), > K}, thus the introduction of K} into Eq. (20) might result in an underestimation of
the elastic peak stress.

A number of numerical analyses have been carried out to correlate the N-SIFs related to sharp and
rounded V-notches. All analyses have considered symmetric plates with double edge notches characterized by

e p/a equal to 0.0, 0.02, 0.04, 0.08, 0.16, 0.32 and 0.64;
e hifa equal to 2, 5, 10 and 50;
¢ notch angle equal to 30°, 45°, 60°, 90°, 120° and 135°.

In all cases (168 models), N-SIFs for rounded notches were calculated by means of Eq. (12). In order to
make calculations more rapid, we used a distance from the notch tip equal to 0.2p. The results already re-
ported in Table 4 justified that choice. The new results are shown in Fig. 7a—f where symbols refer to dif-
ferent /1/a ratios. It is worth noting that the KXI /K ratio exhibits a weak dependence on the ligament width
when //a > 5. For these cases, the ratio between the N-SIFs can be simply given as a function of p/a.

As a consequence, contributions to local stress distribution due to global and local geometry can be sep-
arated. More precisely, global parameters, such as the remote applied load, the notch opening angle and the
h/a ratio, directly influence the N-SIF value of the equivalent sharp notch, but they do not give a substan-
tial contribution to the le /K ratio, which can be evaluated only on the basis of the local geometry (p/a
ratio). These outcomes are rigorously valid only for pure mode I loading but they can be extended also to
mixed mode loading, at least when the mode II stress contribution is low or when the corresponding sharp
V-notch case exhibits non-singular stress distributions.

In order to provide a tool suitable to estimate the K, /K)’ ratio as a function of p/a, we suggest here the
simple linear law:

K3 /KY = o+vt (1)

where both ¢ and y depend on the opening angle (Table 5).

Fig. 7a—f plots Eq. (21), obtained by interpolating the FE data related to the case with i/a = 50 (which
better approximates the limit case of a finite size notch in semi-infinite plate). However, the curve represents
a good approximation for all cases with 4/a equal to or greater than 5.0.

By fitting the data reported in Table 5 a rapid estimation of ¢ and i/ can be achieved by the following
expressions:

@(o) = 1.372(1.00115)% 0 "% ys(a) = 0.0972 4 0.163 cos(0.015250) (22)

where « is in degrees. Plots of ¢ and s are shown in Fig. 8.

As an example of application of Egs. (21) and (22), six plots of gy stress component on the notch bisector
are shown in Fig. 9. Notch root radius p is 0.4 mm (Fig. 9a) and 3.2 mm (Fig. 9b), while the notch depth and
ligament width are kept constant. For the relevant sharp notch cases, FE analyses gave K| =
6.41 MPa(mm)®*% for 20 = 45°, K = 6.49 MPa(mm)’>** for 2¢ = 120° and K\ = 6.16 MPa(mm)®**¢ for
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Table 5
Values of parameters ¢ and y obtained by fitting the data shown in Fig. 7
200 = 30° 200 = 45° 200 = 60° 200 = 90° 200 =120° 200 = 135°
@ 1.0433 1.0246 1.0144 1.0105 1.0229 1.0264
v 0.2409 0.226 0.2003 0.1268 0.0508 0.0246
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Fig. 9. Comparison along the notch bisector between predicted distributions of g,, based on Egs. (5), (21) and (22), and FE results.
Notch root radius equal to 0.4 mm (a) and 3.2 mm (b).

20 = 135°. Theoretical predictions for oy stress component were then obtained from Egs. (5) and (16). The
comparison is found to be very satisfactory.
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6. Further considerations on the use of generalised N-SIFs

The main aim of the paper is to create a bridging between the parameters governing the stress fields of
sharp V-notches and the parameters governing the stress fields of blunted V-notches. It is also possible to
apply the definition given by Eq. (12) to other type of notches by using the “equivalent V-notch” concept
(Filippi and Lazzarin, 2004). Some results are shown in Fig. 10 where Eq. (12) is applied to three circular
and semicircular notches.

Fracture criteria for elements with V-notches are a different matter. To ascertain the limits of applica-
bility of a fracture criterion based on critical values of K, is beyond the scope of this paper. It is reasonable
to think that a fracture criterion for blunted V-notches will be valid only when the stress distribution near
the blunted notch still remains close to the stress field of sharp V-notches. Just to demonstrate a possible use
of Egs. (12) and (14) we have reconsidered here a set of experimental data which were recently published by
Gogotsi (2003). Those data were obtained from specimens made of ceramics. They showed a large variabil-
ity of fracture toughness as a function of the V-notch root radius, which ranged from 0 to about 100 pm.
The behaviour of the materials was perfectly brittle, therefore it is possible to impose KXI equal to the
experimental values of fracture toughness for different values of p, and to determine the critical value of
the external load Pcg able to assure the required local stress distribution by means of linear elastic FE anal-
yses. The results for silicon nitride SisN4 are shown in Fig. 11 where experimental results and theoretical
predictions are compared.

In the presence of sharp V-notches the influence of the notch opening 2« is fully included into N-SIF
definitions. This influence is generally neglected dealing with common notches. According to Nisitani
(1992), linear Notch Mechanics is an engineering method dealing with the notch problems by elastic stress
fields represented by the notch root value p and the maximum principal stress o,... That theory states that
two notched bodies having the same p and the same o,,,, at the notch tip are characterised by the same
linear elastic stress fields. The same elastic stress field and the same response against plasticity assure the
occurrence of the same elastic—plastic stress field in two notched bodies and, then, the same localised dam-
age (Nisitani, 1992). Nisitani’s statements are unquestionable for most notches of interest, but not for all
notches in general. Consider two V-shaped notches different opening angles and the same value of p (typ-
ically, welded joints exhibit at the weld toes mean values of 2o ranging from about 110° to about 150° and a
very small value of p). The constancy of p and o,,,, assures the constancy of the elastic stress fields along
the notch bisector only for a distance less than 0.3p (Atzori et al., 2001). The constancy of the linear elastic
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Fig. 10. Plots of K/\}'_,, Eq. (12), along the notch bisector of some circular and semicircular notches with p =5 mm. The equivalent

V-notches are characterized by 2o = 70° (1 — ; = 0.480), according to Filippi and Lazzarin (2004).
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Fig. 11. Comparison between experimental and estimated values of the critical loads (Berto et al., 2005).

stress field over a more extended region needs the same opening angle, the same p and the same ¢,,,x. More
simply, it needs the same generalised N-SIF.

7. Conclusions

In the presence of sharp V-notches (where the notch root radius is null) subjected to mode I loading con-
ditions, the notch stress intensity factors K} are recognized as parameters suitable for controlling the static
behavior of brittle materials and the fatigue crack initiation phase of structural materials. When the notch
root radius is different from zero, the characteristic, singular, sharp-notch field diverges from the rounded-
notch solution very next to the notch. As the notch root radius p increases, the usefulness of K| rapidly
decreases.

The paper proposed a new definition of the notch intensity factor, KXI, based on the analytical stress
distribution ahead of the V-notch tip. The new parameter quantifies the stress redistribution due to the
rounded notch on the process zone, but it maintains the same units of KY, MPa(m)l_i‘, where 1 — 1 is
the degree of singularity of the sharp solution. The size of the region controlled by KV7I was found to be
mainly dependent on the notch depth, resulting in approximately one tenth of the notch depth when eval-
uated along the notch bisector.

Due to its nature, the new parameter might be useful in all cases where: (a) the effect of stress redistri-
bution due to the notch root radius cannot be neglected; (b) the root radius, in combination only with the
maximum principal stress at the notch tip, is not large enough to control the fracture of brittle or quasi-
brittle materials, nor the fatigue crack initiation phase. Afterwards, also the intensity of the mode II stress
field has been quantified by means of the parameter KXII, defined here on the basis of the 1,9 stress com-
ponent ahead of the notch, in the impossibility to use the 7,9 stress component at the notch tip (which is
null).

Since the new definitions are based on an approximate analytical frame recently reported in the litera-
ture, the accuracy of the new definitions have been carefully checked against numerical analyses. In partic-
ular, the variability of KXI was found to be weak in more than 20 models analyzed numerically and this fact
makes the new parameter of practical interest.

With reference only to mode I load conditions, some diagrams were reported in the paper for six different
notch angles (200 = 30°, 45°, 60°, 90°, 120° and 135°). These diagrams give the KXI/K}' ratio (notch intensity
factor for blunted V-notches on notch intensity factor for sharp V-notches) as a function of p/a, p and a
being the notch root radius and the notch depth, respectively.
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The diagrams show that:

¢ for each notch angle, a single curve summarizes with reasonable approximation the link between KXI /KY
and p/a, but only when the ligament width to notch root ratio 4/p is equal to or greater than 5.0; other-
wise, the effect of the ligament width cannot be disregarded;

e by keeping p/a constant, the difference between KXI /K strongly depends on the notch angle 2o; the
smaller the angle, the greater the difference.
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